Search results for "computational pathology"

showing 1 items of 1 documents

SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images.

2021

High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CN…

Cancer Researchmedicine.medical_specialtyComputer scienceMagnificationContext (language use)lcsh:RC254-282Convolutional neural network030218 nuclear medicine & medical imaging03 medical and health sciencesneuroblastoma0302 clinical medicinebreast cancermedicinemelanomatumor region classificationSegmentationCluster analysisOriginal Researchbusiness.industryDeep learningDigital pathologydeep learningPattern recognitionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmachine learningOncology030220 oncology & carcinogenesisHistopathologyArtificial intelligencebusinessdigital pathologycomputational pathologyFrontiers in oncology
researchProduct